23.10.2023

Кпд идеальной тепловой машины. Принцип действия тепловой машины


>>Физика: Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии еще недостаточно. Необходимо еще уметь за счет энергии приводить в движение станки на фабриках и заводах, средства транспорта , тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели - устройства, способные совершать работу. Большая часть двигателей на Земле - это тепловые двигатели . Тепловые двигатели - это устройства, превращающие внутреннюю энергию топлива в механическую.
Принципы действия тепловых двигателей. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя - сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T 1 температурой нагревателя."
Роль холодильника. По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры T 2 , которая обычно несколько выше температуры окружающей среды. Ее называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры атмосферы.
Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть теплоты неизбежно передается холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии теряется.
Тепловой двигатель совершает работу за счет внутренней энергии рабочего тела. Причем в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику).
Принципиальная схема теплового двигателя изображена на рисунке 13.11.
Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 совершает работу A ´ и передает холодильнику количество теплоты Q 2 .
Коэффициент полезного действия (КПД) теплового двигателя .Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя.
Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где Q 1 - количество теплоты, полученное от нагревателя, а Q 2 - количество теплоты, отданное холодильнику.
Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы , совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η<1.
КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При T 1 -T 2 =0 двигатель не может работать.
Максимальное значение КПД тепловых двигателей. Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру T 1 , и холодильником с температурой T 2 . Впервые это сделал французский инженер и ученый Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).
Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат. Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуреT 1 , при этом он получает количество теплоты Q 1 .
Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника T 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдает холодильнику количество теплоты Q 2 , сжимаясь до объема V 4 . Затем сосуд снова термоизолируют, газ сжимается адиабатно до объема V 1 и возвращается в первоначальное состояние.
Карно получил для КПД этой машины следующее выражение:

Как и следовало ожидать, КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.
Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру T 1 , и холодильником с температурой T 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины.

Формула (13.19) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η =1.
Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: T 1 ≈800 K и T 2 ≈300 K. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели Дизеля.
Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.
Тепловые двигатели совершают работу благодаря разности давлений газа на поверхностях поршней или лопастей турбины. Эта разность давлений создается с помощью разности температур. Максимально возможный КПД пропорционален этой разности температур и обратно пропорционален абсолютной температуре нагревателя.
Тепловой двигатель не может работать без холодильника, роль которого обычно играет атмосфера .

???
1. Какое устройство называют тепловым двигателем ?
2. Какова роль нагревателя, холодильника и рабочего тела в тепловом двигателе?
3. Что называется коэффициентом полезного действия двигателя?
4. Чему равно максимальное значение коэффициента полезного действия теплового двигателя?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и T 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно: Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения где T 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача. Коэффициент полезного действия тепловой машины Рабочее тело, получая некоторое количество теплоты Q 1 от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q 1 - |Q 2 |. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины: Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть? Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г. 42.Энтропия. Второй закон термодинамики. Энтропи́я в естественных науках - мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния; в теории информации - мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике - степень неполноты, неопределённости знаний. Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как внеобратимых - её изменение всегда положительно. , где dS - приращение энтропии; δQ - минимальная теплота подведенная к системе; T - абсолютная температура процесса; Употребление в различных дисциплинах § Термодинамическая энтропия - термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частиц термодинамической системы. § Информационная энтропия - мера неопределённости источника сообщений, определяемая вероятностями появления тех или иных символов при их передаче. § Дифференциальная энтропия - энтропия для непрерывных распределений § Энтропия динамической системы - в теории динамических систем мера хаотичности в поведении траекторий системы. § Энтропия отражения - часть информации о дискретной системе, которая не воспроизводится при отражении системы через совокупность своих частей. § Энтропия в теории управления - мера неопределённости состояния или поведения системы в данных условиях. Энтропия - функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы. Энтропия - функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия - функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы. Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0. Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения. 43.Эффективное сечение рассеяния. Средняя длина свободного пробега молекул. Средняя длина свободного пробега молекул

Предположим, что все молекулы, кроме рассматриваемой, неподвижны. Молекулы будем считать шарами с диаметром d. Столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. При столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. Поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1).

рис. 1

Молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. За секунду молекула проходит путь, равный . Поэтому число происходящих за это время столкновений равно числу молекул, центры которых попадают внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. Его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным Если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно

(3.1.2)

В действительности движутся все молекулы. Поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной.Предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. В самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). Поэтому формулу (3.1.2) следует написать в виде:

Так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее

С учетом последнего равенства формулу (3.1.4) можно переписать в виде:

Длина свободного пробега молекулы - это среднее расстояние (обозначаемое λ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Где σ - эффективное сечение молекулы, n - концентрация молекул.

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку - эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

Превращение топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 - Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 - Q 2)/ Q 1 = 1 - Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале - равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T 1 . Количество теплоты, необходимой для этого, - Q 1. После газ без теплообмена расширяется Достигнув температуры Т 2 , газ сжимается изотермически, передавая холодильнику энергию Q 2 . Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T 1 - Т 2)/ T 1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 - Т 2 / T 1 , зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800 о С, а температура холодильника на 500 о С ниже?

T 1 = 800 о С= 1073 К, ∆T= 500 о С=500 К, η - ?

По определению: η=(T 1 - Т 2)/ T 1.

Нам не дана температура холодильника, но ∆T= (T 1 - Т 2), отсюда:

η= ∆T / T 1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя - 400 К?

Q 1 = 1 кДж=1000 Дж, А = 650 Дж, Т 2 = 400 К, η - ?, T 1 = ?

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T 1 - Т 2)/ T 1 = 1 - Т 2 / T 1.

Выполнив математические преобразования, получим:

Т 1 = Т 2 /(1- η).

Т 1 = Т 2 /(1- A / Q 1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т 1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т 1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

ДВС - наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов - основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа - 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения - вопрос недалекого будущего. Изменение свойств материалов, топлива - это проблема, над которой работают лучшие умы человечества.

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель , рабочее тело и холодильник .

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Q нагр, полученное от нагревателя, количество теплоты |Q хол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

A = Q нагр – |Q хол|.

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q , то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики . Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию .

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя T нагр и холодильника T хол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).

КПД тепловой машины связан с количеством теплоты, полученным за цикл от нагревателя, и количеством теплоты, отданным холодильнику, соотношением:

КПД - формула

η= Q полезн. /Q общ. *100%

КПД равен отношению полезного количества теплоты к полному её количеству.

η=A /Q общ. *100%

A - работа.

Полезная теплота (энергия) - энергия, израсходованная только на достижение поставленной цели (в общем плане).

Полная энергия - общее количество затраченной энергии (то есть с учётом потерь на какие-либо факторы).

Полная энергия (для тепловой машины) - сумма полезной энергии и энергии, и энергии, отданной холодильнику: Q полн. =Q полезн. +Q хол.

Значит, полезная энергия равна разности полной энергии и энергии, отданной холодильнику: Q полезн. =Q полн. -Q хол.

Тепловая машина с КПД выше 100% не может существовать.

Если известен процент КПД, то количество теплоты можно рассчитать с помощью пропорций. зная лишь одну из составляющих теплоты и КПД, можно вычислить остальные составляющие. Проценты КПД прямо пропорциональны полезной работе. Например, если КПД тепловой машины равен 10% и эта машина машина совершила работу например в 20 ДЖ за цикл работы, то вся теплота (100%) равна 200 Дж, из которых 180 (90%) отдано холодильнику.

Зависимость КПД от температуры

Также КПД зависит от температуры нагревательного элемента и холодильника:

η=(T н -T х )/T н - КПД равен отношению разности температур нагревателя и холодильника к температуре нагревателя.

Надо учитывать, что температура холодильника не может быть выше температуры нагревателя, иначе тепловая машина не имеет смысла существования.

При неизменной температуре холодильника, чем выше температура нагревателя, тем выше КПД, зависимость по гиперболе.

Внутренняя энергия газа является функцией состояния газа, то есть зависит только от того, в каком состоянии находится газ. Если газ в результате циклического процесса возвращается в исходное состояние, изменение его внутренней энергии будет равным нулю.

Если на диаграмме p-V площадь фигуры, ограниченной линиями циклического процесса отлична от нуля, то газ совершил работу.

При циклическом процессе на диаграмме p-V, если газ совершил работу, значит суммарное количество полученной и отданной теплоты равно нулю, так как всё полученное количество теплоты послностью расходуется на изменение внутренней энергии и на совершение работы газом. Газ при возвращении в исходное состояние имеет ту же внутреннюю энергию, так как она является функцией состояния, а значит, вся полученная энергия была потрачена на работу.

КПД тепловой машины можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.

На диаграмме p-V работа газа в результате циклического процесса соответствует площади внутри цикла.

После совершения любого циклического процесса газ возвращается в первоначальное состояние. Внутренняя энергия является функцией состояния, а значит в результате совершения циклического процесса её изменение равно нулю.

КПД тепловой машины линейно убывает при возрастании температуры холодильника.

На диаграмме p-T газ не совершает работу, если прямая графика изменения его состояния проходит через начало координат, так как в этом случае объём не изменяется.

Положительное количество теплоты самопроизвольно не может перейти от более холодного тела к более горячему.

Нельзя создать циклический тепловой двигатель, с помощью которого можно энергию, полученную от нагревателя, полностью превратить в механическую работу.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что КПД не может равняться 100%.

Второе начало термодинамики: КПД тепловой машины не может быть больше или равен 100%.

Постулат Клаузиуса : "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Тепло самопроизвольно может переходить только от более горячего тела к более холодному.".

Постулат Томпсона (Кельвина): "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара".

Возможна передача энергии от тела с меньшей температурой к телу с большей температурой путём совершения работы.

Расширяясь, газ совершает положительную работу, а сжимаясь - отрицательную.

Внутренняя энергия фиксированного количества одноатомного идеального газа зависит только от температуры: ΔU=(3/2)v R ΔT.

При адиабатическом процессе теплообмен отсутствует.

Цикл Карно состоит из двух адиабат, изотермического сжатия и расширения. Внутренняя энергия газа изменяется на адиабатах, то есть на двух участках этого цикла.