31.10.2023

Электрические схемы бесплатно. Схемы зарядных устройств для малогабаритных аккумуляторов


Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?

Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?

Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:

  • - Простота: схема содержит всего 4 довольно распространённых компонента.
  • - Полная автономность: контроль тока и напряжения.
  • - Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • - Небольшие габариты конечного устройства.
  • - Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:

  • - Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • - При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства

На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» - это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина - это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.



Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье - .
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.

Выполнены по простой схеме, в которую входит трансформатор и выпрямитель. Их использование рассчитано на снятие рабочей сульфитации с поверхности пластин аккумулятора, но застарелую крупнокристаллическую сульфитацию они убрать не в состоянии.Характеристики устройства Напряжение аккумулятора, 12В Емкость, А-ч 12-120Время измерения, с 5Импульсный ток измерения, А 10Диагностируемая степень сульфатации, %30. Т160 схема регулятора тока ..100Масса устройства, г 240Рабочая температура воздуха, ±27°Ссталлы сульфата свинца обладают большим сопротивлением, что препятствует прохождению зарядного и разрядного тока. Напряжение на аккумуляторе во пора зарядки растет, ток заряда падает, а обильное выделение смеси кислорода и водорода может привести к взрыву. Разработанные импульсные зарядные устройства способны во пора зарядки перевести сульфат свинца в аморфный свинец с последующим его осаждением на поверхность очищенных от кристаллизации пластин.Исходя из значения напряжения под нагрузкой, резистором R14 устанавливается соответствующее роль сульфитации в процентах на ш...

Для схемы "Немного об ускоренной зарядке"

В последнее час в продаже появилось большое количество различных (ЗУ). Многие из них обеспечивают зарядный ток. численно равный 1/10 от емкости аккумулятора. Зарядка при этом длится12. ..18 часов, что многих прямо не устраивает. Для удовлетворения требований рынка разработаны "ускоренные" зарядные устройства.Например, ЗУ "FOCUSRAY". модель 85 (рис.1), представляет собой автоматическое зарядное устройство для ускоренной зарядки, смонтированное в корпусе с сетевой вилкой и позволяющее заряжать одновременно два аккумулятора типа 6F22 ("Ника") или четыре NiCd или NiMH аккумулятора типоразмеров AAA или АА (316) током до 1000 мА. На корпусе ЗУ, напротив каждого аккумуляторного гнезда, в кассете имеется свой светодиод. индицирующий режим работы ЗУ. При отсутствии аккумулятора он не светится, при зарядке - мигает, по окончании зарядки светит постоянно.Естественно, наиболее полноценная работа батареи происходит тогда, когда аккумуляторы одинаковые. Схемы таймер для периодического включения нагрузки При этом заряд и разряд происходят одновременно, и полностью используется их ресурс как источника питания. На практике такая идеальная ситуация почти не встречается, и приходится либо подбирать аккумуляторы для батареи, пользуясь приборами, либо "приучать" аккумуляторы к совместной работе. Для этого необходимо:- взять однотипные аккумуляторы с одинаковой емкостью и, желательно, из одной партии; - зарядить их и полностью разрядить на реальную нагрузку; - повторить заряд-разряд в составе батареи несколько раз, т.е. произвести ее "формовку".Подогнать аккумуляторы приятель к другу можно и при индивидуальной зарядке. Установив аккумуляторы в держатели батарейного отсека ЗУ. включае...

Для схемы "Автоматическое ЗУ для малогабаритных аккумуляторов"

Разработанное автоматическое зарядное устройство (АЗУ) позволяет заряжать малогабаритные аккумуляторы МРЗ-плееров. цифровых фотокамер, фонарей и т.д. от сети. Применение ею позволяет отказаться от нескольких и производить полную разрядку с поставленной задачей устранения "эффекта памяти", которым обладают просторно распространенные никель-кадмиевые (Ni-Cd) аккумуляторы. АЗУ реализует патент РФ на полезную модель №49900 от 04.08.2006 г. Прототипом для него послужило зарядное устройство из .Основные особенности АЗУ обеспечиваются применением интегральной микросхемы TL431 (регулируемого стабилитрона) и использованием генератора переменного тока на основе реактивного элемента (в данном варианте - конденсатора). АЗУ обеспечивает зарядку "пальчиковых" аккумуляторов типоразмеров AAA и АА стабильным током 155 мА от сети (220 8, 50 Гц). Описание микросхемы 0401 Оно может использоваться и при меньших значениях напряжения сети с пропорциональным уменьшением зарядного тока. Стабильность зарядного тока всецело определяется стабильностью рис.1 питающего АЗУ переменного напряжения.В начале заряда батареи аккумуляторов светится сигнальный светодиод, перед окончанием зарядки он начинает мигать, а потом полностью выключается. АЗУ обеспечивает автоматическое снижение зарядного тока (не менее, чем на порядок) при достижении ЭДС заряженной батареи и световую индикацию этого режима.В автономном режиме работы (без подключения к сети) производится автоматический разряд аккумулятора до напряжения приблизительно 0,6 В со световой индикацией процесса. При полностью заряженном аккумуляторе такой разряд начинается с тока примерно 200 мА.Разряд всей батареи аккумуляторов нерационален, т.к. может усугублять не идентичность составляющих ее аккумуляторов.Схема АЗУ показана на рис.1. Устройство содержит:- токоограни...

Для схемы "Зарядное устройство для малогабаритных элементов"

ЭлектропитаниеЗарядное устройство для элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для "обновления" элемента через 1,5...3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Как подключить реостат к зарядному устройству Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 - один такой диод, а вместо диодной матрицы - любые диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 - бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали устройства смонтированы на печатной п...

Для схемы "Применение интегрального таймера для автоматического контроля напряж"

ЭлектропитаниеПрименение интегрального таймера для автоматического контроля напряжения при зарядке МакгоуэнФирма Stoelting Co. (Чикаго, шт. Иллинойс)На основе интегрального таймера типа 555 можно собрать автоматическое зарядное устройство для аккумуляторных батарей. Назначением такого зарядного устройства является поддержание в полностью заряженном состоянии резервной аккумуляторной батареи для питания какого-либо измерительного устройства. Такая батарея постоянно остается подключенной к сети переменного тока независимо от того, используется она в в данный момент для питания устройства или нет. В автоматическом зарядном устройстве из состава интегрального таймера используются оба компаратора, логический триггер и мощный выходной усилитель.Опорный стабилитрон D1 при посредстве внутреннего резистивного делителя, имеющегося в ИС таймера, подает опорные напряжения на оба компаратора. Т160 схема регулятора тока Напряжение на выходе таймера (вывод 3) переключается между уровнями 0 и 10 В.При калибровке схемы вместо батареи никель-кадмиевых аккумуляторов включают регулируемый источник напряжения постоянного тока. Потенциометр "Выключение" устанавливают на требуемое конечное напряжение зарядки батареи (обычно 1,4 В на элемент), в потенциометр "Включение" - на требуемое начальное напряжение зарядки (обычно 1,3 В на элемент).Резистор R1 сдерживает рабочий ток на уровне менее 200 мА при любых условиях. Диод D2 предотвращает разряд батареи через таймер, когда последний пребывает в сос...

Для схемы "Малогабаритный простой блок питания"

Описанный ниже блок питания можно использовать для переносных и радиотехнических (радиоприемников, магнитол, магнитофонов и др.). Технические данные: Выходное напряжение - 6 или 9 В Максимальный ток нагрузки - 250 мА Блок питания имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может вылезти из строя. Схема блока питания показана на рисунке. Параметрический стабилизатор тока включает в себя цепочку R1C1 и первичную обмотку трансформатора Т1. Компенсационный стабилизатор напряжения собран на элементах R2, VT1, VD2, VD3, VD4. Работа схем неоднократно описывалась в литературе и в этом месте не приводится. Светодиод VD5 (красного цвета) с балластным сопротивлением R3 служит для индикации работоспособности блока питания. Детали: С1 - любой малогабаритный бумажный с номиналом 0,25 мкФ х 680 В; С2, СЗ - 1000 мкФ х 16 В; VD1 - КЦ407А; VD2 - Д18; VD3 - КС139А; VD4 - КС156А; VD5 - АЛ307А, Б; VT1 - КТ805АМ; Т1 - магнитопровод Ш12 х 18, первичная обмотка 2300 витков проводом ПЭВ-0,1, вторичная - 155 витков проводом ПЭВ-0,35. Блок питания умещается в корпус-вилку от импортного адаптера. О.Г. Рашитов, г.Киев...

Для схемы "Зарядное устройство для 3-6-вольтовых аккумуляторов"

Предлагаемое зарядное устройство разработано для зарядки стабильным током в первую очередь шахтерских аккумуляторов, именуемых в народе "коногонкой". Саморазряд у этих очень большой. А это означает, что уже через месяц, более того без нагрузки тот самый аккумулятор надобно заряжать. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов, подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема зарядного устройства очень проста (см. рисунок). Выпрямитель и трансформатор на схеме не показаны. Вторичная обмотка обеспечивает ток в нагрузке более 3 А при напряжении 12 В. Выпрямитель мостового типа на диодах Д242А, фильтрующий конденсатор - 2000 мкФх50 В (К50-6). Полевой транзистор типа КП302Б (2П302Б, КП302БМ) с начальным током стока 20-30 мА. Стабилитрон VD1 типа Д818 (Д809). Транзистор типа КТ825 с любой буквой. Его можно сменить схемой Дарлингтона, например, КТ818А и КТ814А и т.д. Схемы конвертера радиолюбителя Резистор R1 типа МЛТ-0,25; резистор R2 типа ППЗ-14, но полностью подойдет и с графитовым покрытием; R3 - проволочный (нихром - 0,056 Ом/см). Транзистор VT2 размещен на ребристом теплоотводе с охлаждающей поверхностью приблизительно 700 см. Электролитический конденсатор С1 любого типа. Конструктивно схема выполнена на печатной плате, расположенной вблизи транзистора VT2. Чтобы заряжать и 12-вольтовые аккумуляторы, следует предусмотреть вероятность увеличения на 6 В переменного напряжения на вторичной обмотке сетевого транзистора зарядного устройства. Данную схему использовали так же, как приставку к блоку питания (подойдет и не стабилизированный источник напряжения). Достоинство данной схемы - не боится коротких замыканий по выходу, поскольку представляет собой фактически генератор стабильного тока. Величина этого тока зависит в первую очередь от смещения, которое устанав...

ЭлектропитаниеВыпрямители с электронным регулятором для зарядки Выпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Т160 схема регулятора тока аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следующее количе...

Для схемы "Выпрямители с электронным регулятором для зарядки аккумуляторов"

Автомобильная электроникаВыпрямители с электронным регулятором для зарядки Выпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Регулятор мощности на тс122 25 Транзистор T1 устанавливают на металлическом радиаторе, площадь поверхности радиатора должна быть не менее 350 см.кв. Поверхность учитывается с обеих сторон пластины при толщине ее не менее 3 мм. Б. ВАСИЛЬЕВ Схема, приведенная на рис. 2, отличается от предыдущей тем, что с поставленной задачей увеличения максимального тока до 10 о транзисторы T1 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5 - Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следу...

Для схемы "ПРОСТЫЕ ЧМ-РАДИОМИКРОФОНЫ"

РадиошпионПРОСТЫЕ ЧМ-РАДИОМИКРОФОНЫРадиомикрофоны с частотной модуляцией (ЧМ) обычно довольно сложны. Так, в ЧМ-радиомикрофоне сигнал от электродинамического микрофона усиливается операционным усилителем, после чего поступает на базу транзистора высокочастотного генератора. осуществляя тем самым смешанную амплитудно-частотную модуляцию. Puc.1Значительно упростить конструкцию ЧМ радиомикрофона можно при использовании малогабаритных конденсаторных микрофонов, включаемых непосредственно в колебательный контур высокочастотного генератора. Варианты возможных схем с таким включением приведены на рис.1-3.Puc.2Как понятно, конденсаторный микрофон выполнен в виде развернутого конденсатора с двумя плоскими неподвижными электродами, параллельно которым закреплена мембрана (тонкая фольга, металлизированная диэлектрическая пленка и т.п.), электрически изолированная от неподвижных электродов Выступая элементом контура генератора, он, таким образом, осуществляет частотную модуляцию.Puc.3Мощность ЧМ-радиомикрофонов составляет долиединицы мВт для схемы на рис.1, единицы-десятки мВт для схемы на рис. Описание микросхемы 0401 2 и десяткисотни (при наличии радиаторов) мВт для схемы на рис.3. Радиус действия, соответственно, изменяется от десятков метров до нескольких километров - при использовании ЧМ-радиоприемников с чувствительностью не менее 10 мкВ/м. Параметры катушек индуктивности аналогичны приведенным в .Литература 1. Ридкоус В. ЧМ радиомикрофон. - Радиолюбитель. -1991, N4, с. 22-23.М.ШУСТОВ, г.Томск(РЛ 9/91)...

Традиционные зарядные устройства прошлых лет имеют недостатки, они обладают большими габаритами и весом. В последние годы при изготовлении источников питания, радиолюбители огромное предпочтение отдают импульсникам. Это в первую очередь дешевизна, не значительный вес и габариты, причём при малых размерах импульсные устройства выдают приличный ток! Даже как то не привычно смотреть на маленькую коробочку, подключенную к автомобильному аккумулятору, способную его зарядить. Недостатком являются импульсные броски в сети, из за которых данные устройства зачастую выходят из строя, но этим можно пренебречь.

Зарядное устройство, которое будет описано в этой статье, разрабатывалось специально для зарядки аккумуляторов с выходным током до 7А. Можно так же заряжать аккумуляторы от шуруповёрта, бесперебойника, пальчиковые аккумуляторы и др., скорректировав зарядный ток. Контроль тока ведётся на встроенный амперметр. Запускается устройство с помощью пусковой кнопки. При коротком замыкании срывается генерация блокинг-генератора и устройство отключается. Повторное включение производится при помощи той же кнопки. Устройство потребляет от сети ток не более 2А и работоспособно при напряжении 170в.

Рассмотрим электрическую принципиальную схему устройства.

Состоит оно из двух половинок: это высоковольтная цепь с выпрямителем, блокинг-генератором и низковольтная - со вторичным выпрямителем и ШИМ-регулятором. Сетевое напряжение через предохранитель F1 поступает на диодный мост D1, где выпрямляется и сглаживается конденсаторами С1, С2. Постоянное напряжение в пределах 290 вольт подаётся на блокинг-генератор. Основными элементами этого генератора являются транзисторные ключи Т1 и Т2, которые открываются поочерёдно, благодаря синфазному включению обмоток II и IV обратной связи высокочастотного трансформатора. Нагружен генератор на обмотку III трансформатора. Частота генерации лежит в пределах 20-30 кГц. Резисторы R2, R3 в цепи эмиттеров этих транзисторов ограничивают ток, обеспечивая тем самым мягкий режим работы. Резисторы R4, R5 ограничивают ток базы. Диоды D2, D3 предотвращают пробой транзисторов обратным напряжением из за индуктивных выбросов в импульсном трансформаторе. Запускается генератор с помощью короткого импульса, который подаётся на обмотку I через конденсатор С3 и пусковую кнопку S1.

Вторая часть схемы, низковольтная. Переменное напряжение снимается с обмоток V и VI высокочастотного трансформатора, выпрямляется диодной сборкой D4, сглаживается конденсатором С4 и далее поступает на ШИМ регулятор. Выполнен этот регулятор на двух транзисторах Т3 и Т4. Это своеобразный мультивибратор с изменяемой симметрией. От положения движка переменного резистора R10 зависит скважность импульсов, подаваемых на затвор полевого транзистора Т5. Частота генерации ШИМа лежит в пределах 5-7 кГц и определяется ёмкостью конденсаторов С6 и С7. При работе данного зарядного устройства, при нагрузке наблюдался нагрев компонентов схемы, импульсного трансформатора, поэтому я снабдил его вентилятором. Так же имеется контрольная лампочка Н1, индицирующая работу устройства. С помощью амперметра осуществляется контроль зарядного тока.

Конструкция и детали : Все детали и их замена указаны в таблице. На ключевые транзисторы следует установить небольшие радиаторы, площадью в три раза больше, чем сами транзисторы. При использовании устройства на больших токах, до 7А, диодную сборку и полевой транзистор следует так же установить на небольшие радиаторы. Небольшие, потому что кулер создаёт поток воздуха и они сильно не перегреваются.

Трансформатор самодельный, намотан на ферритовом кольце наружным диаметром 30мм.

Обмотка III имеет 140 витков провода ПЭЛ-0,31мм, обмотки I, II и IV содержат по 2 витка и намотаны цветным компьютерным или телефонным проводом (от кабеля). Вторичные обмотки V и VI содержат по 18 витков, но количество витков при необходимости можно откорректировать. Эти обмотки я не стал мотать толстым одножильным проводом, так как это причиняет большие неудобства при намотке. Я изготовил самодельный многожильный провод. Взял 20 жил в один пучок провода ПЭЛ-0,18мм. Растянул 20 жилок вдоль комнаты, затем скрутил их с помощью шуруповёрта. Первой наматывается обмотка III и затем проматывается фторопластовой лентой.

Амперметр - головка от старого магнитофона. Шкалу в децибелах удалил, а вместо неё поставил самостоятельно отградуированную.

Всё содержимое расположено на пластмассовой основе и приклеено полимерным клеем.

А вот так выглядит печатная плата:

При изготовлении данного устройства и дальнейшего его обслуживания соблюдайте правила электробезопасности!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
D1 Диодный мост

KBP208G

1 В блокнот
D2, D3 Выпрямительный диод

1N4007

2 КД226Д В блокнот
D4 Выпрямительный диод

SBL3040PT

1 Матрица В блокнот
Т1, Т2 Биполярный транзистор

MJE13007

2 EN13007, EN13009 В блокнот
Т3, Т4 Биполярный транзистор

2SC1815

2 КТ315 В блокнот
Т5 Транзистор N302AP 1 Полевой В блокнот
R1 Резистор

330 кОм

1 0,25 Вт В блокнот
R2, R3 Резистор

0.56 Ом

2 0,5 Вт В блокнот
R4, R5 Резистор

22 Ом

2 0,25 Вт В блокнот
R6 Резистор

150 Ом

1 0,5 Вт В блокнот
R7 Резистор

220 Ом

1 0,25 Вт В блокнот
R8, R12 Резистор

2.7 кОм

2 0,25 Вт В блокнот
R9 Резистор

15 кОм

1 В блокнот
R10 Переменный резистор 150 кОм 1 0,25 Вт В блокнот
R11 Резистор

1.5 кОм

1 0,25 Вт

Андрей Барышев, г. Выборг

В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости С А, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 - 0.3)С А.

В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

Принципиальная схема ЗУ приведена на рис. 1.

Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме - не ниже 36 В. Диоды выпрямительного моста - любые выпрямительные на ток от 0.5 А (КД226, и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 - средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа ). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 - регулируемый стабилизатор напряжения или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах - от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В - 2.4 В - 3.6 В - 3.9 В - 9 В - 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

ЗУ можно собрать в небольшом корпусе подходящих размеров, например - от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 - 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор - микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам - переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт - сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать - нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора - когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго - перезаряда его не произойдет.

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о зарядно-балансировочном устройстве EV-Peak E3, позволяющим заряжать аккумуляторные сборки (2S-4S) на основе лития (Li-Ion / Li-Pol) в режиме балансировки током 3А. Данный прибор представляет огромный интерес, в первую очередь, для людей, увлекающихся РУ техникой и имеющих большой парк различных модельных аккумуляторов, а также для переделки электроинструмента на литий. Зарядное устройство имеет некоторые особенности, поэтому кому интересно, как устройство показало себя в работе, милости прошу под кат.

Общий вид зарядно-балансировочного устройства EV-Peak E3:


Данный зарядник покупался с конкретной целью – быстрая зарядка переделанной на литий 4S батареи шуруповерта. На момент покупки он стоил $14,99, чего-то аналогичного по функционалу (заряд 4S через балансировочный выход) за эти деньги просто нет:


Краткие ТТХ:
- Производитель – EV-Peak
- Модель – e3
- Корпус – пластик
- Напряжение питания – 100-240V
- Зарядная мощность – 30W
- Зарядный ток – 3А (фиксирован, постепенно снижается)
- Ток балансировки – 400ma
- Типы поддерживаемых аккумуляторов – литиевые (Li-Ion / Li-Pol) 2S-4S
- Размеры – 116мм*72мм*40мм
- Вес – 170гр

Комплектация:
- зарядное устройство EV-Peak E3
- сетевой шнур с евровилкой длиной 1м
- инструкция


Зарядное устройство EV-Peak E3 поставляется в компактной коробочке темного цвета из плотного гофрокартона, на которой присутствует логотип компании и наименование модели:


С торца коробки указаны основные спецификации устройства и тип вилки питания:


Для подключения к питающей сети служит сетевой шнур с евровилкой длиной около 1м:


В комплекте имеется краткое руководство по эксплуатации на английском языке:


Итого, комплектация хорошая, все доступно для работы «из коробки».

Габариты:

Зарядное устройство EV-Peak E3 очень компактное. Его размеры всего 116мм*72мм*40мм. Вот сравнение с аналогом в лице SkyRC e450:


Ну и по традиции, сравнение с тысячной банкнотой и коробком спичек:


Вес зарядного устройства небольшой – около 185гр:


Внешний вид:

EV-Peak E3 представляет собой зарядно-балансировочное устройство, способное заряжать аккумуляторные сборки (2S-4S) на основе лития (Li-Ion / Li-Pol) током 3А. Ток балансировки при этом – около 400ma. В отличие от SkyRC e450, в зарядном устройстве EV-Peak E3 отсутствует возможность заряда высоковольтовых литиевых аккумуляторов (HV 4,35V), литий-фосфатных (Li-Fe), а также с некоторой натяжкой аккумуляторов на основе никеля (NiCd/NiMH). К тому же, отсутствует возможность выбора зарядного тока, что является одним из главных минусов устройства. Другими словами, ЗУ EV-Peak E3 идеально подойдет для быстрой зарядки емких аккумуляторных сборок от радиоуправляемых моделей или электроинструмента.
Зарядное устройство EV-Peak E3 выполнено в черном пластиковом корпусе с множеством вентиляционных отверстий по бокам и включает в себя как схему управления зарядом, так и блок питания:


Основной концепцией компании является простота и надежность. В связи с этим, ЗУ EV-Peak E3 лишено каких-либо кнопок управления, а пользователю доступны лишь гнездо для подключения сетевого шнура и гнёзда для подключения аккумуляторных сборок. Расположены они по разным торцам устройства:


С противоположного торца присутствуют три гнезда для подключения трех видов аккумуляторных сборок (слева внизу – 2S, справа внизу - 3S, сверху - 4S):


На нижней стороне корпуса присутствует наклейка с указанием основных характеристик устройства, а также четыре пластиковые ножки:


Для индикации процесса (уровня) заряда предназначены 4 светодиодных индикатора:


После подключения аккумулятора, заряд начинается не сразу. В режиме ожидания поочередно мигают два индикатора, а при подключении аккумуляторной сборки сначала происходит проверка правильности подключения, а лишь затем начинается заряд.

Управление и индикация работы:

По управлению все банально и просто:
1) сначала подключаем зарядное устройство к сети. При этом должны поочередно мигать два индикатора
2) далее подключаем балансировочный разъем аккумулятора в соответствующее гнездо. Левый нижний разъем – для 2S, правый нижний – для 3S, верхний - для 4S сборок (двух/трех/четырехбаночные сборки аккумуляторов)
3) электроника проверяет правильность подключения и начинает заряд

Основное отличие зарядного устройства EV-Peak E3 от аналогичного SkyRC e450 в том, что нет необходимости подключать силовой разъем к устройству, поскольку питание подается сразу же на крайние балансировочные выводы:


Хотелось бы также заметить, что данное устройство кардинально отличается от SkyRC e3 и его многочисленных копий:


В тех устройствах установлены три независимых линейных контроллера (TP4056 или аналоги), заряжающие каждый свою банку током 0,8-1А. Балансировка, как таковая, там отсутствует и заряд начинается сразу же после подключения. Соответствие конечных напряжений на ячейках оставляет желать лучшего, впрочем, как и зарядный ток. В свою очередь, зарядное устройство EV-Peak E3 построено на несколько иной схемотехнике и «подгоняет» напряжение на всех ячейках к одному значению (4,2V на каждую банку).

Индикация заряда:
- мигает первый индикатор – уровень заряда батареи менее 25%
- горит первый и мигает второй индикатор - уровень заряда батареи от 25% до 50%
- горят первый, второй и мигает третий индикатор - уровень заряда батареи от 50% до 75%
- горят все три и мигает четвертый индикатор - уровень заряда батареи от 75% до 99% (балансировка)
- все четыре индикатора горят – батарея полностью заряжена

Разборка устройства:

Разобрать зарядное устройство EV-Peak E3 достаточно просто. Для этого необходимо выкрутить четыре винта на нижней стороне корпуса:


К качеству монтажа нареканий практически нет - пайка ровная, но в некоторых местах флюс до конца не смыт:


Микросхемы на оборотной стороне платы более крупно:


По схемотехнике входной фильтрующей части блока питания нареканий практически нет: присутствует плавкий предохранитель, фильтрующий конденсатор Х-типа (фильтрация от помех самого БП), кондер 68mkF*400V, двухобмоточный дроссель и конденсаторы Y-типа для снижения импульсных помех (синие):


Не хватает, правда, терморезистора для ограничения пускового тока и варистора для защиты от бросков сетевого напряжения. Силовые мосфеты и диоды прижаты к плоскому алюминиевому радиатору (пластине) через термопасту:


К сожалению, удалось прочитать только слева маркировку сдвоенных диодов Шоттки (MBRF20100CT), рассчитанные на 100V/20A.
Ревизия платы V1.4:


Многим покажется сходство 8-миногих мосфетов с «народными» линейными контроллерами заряда, но это не так. На плате присутствуют четыре мосфета AO4407A (один на оборотной стороне платы), рассчитанные на 30V/12A и четыре резисторных шунта:


Вцелом, исполнение хорошее, некоторые элементы взяты с запасом и дополнительно зафиксированы герметиком. На верхней крышке корпуса присутствует вырезанное окно, закрытое наклейкой:


Подозреваю, что в ассортименте компании есть похожие модели в подобном корпусе, но уже с кнопкой управления или кнопкой выбора тока заряда.

Тестирование зарядного устройства EV-Peak E3:

Прежде чем начать тестирование, немного расскажу о балансировке. Она предназначена для выравнивания напряжения на ячейках/банках аккумуляторной сборки, соединенных последовательно две или более (2S-4S). Как известно, аккумуляторов с абсолютно одинаковыми параметрами не бывает, поэтому один разряжается чуть быстрее, другой – чуть медленнее остальных. Следовательно, и при заряде один зарядится чуть быстрее, другой – чуть медленнее. Хотелось бы отметить важную особенность данной модели, а именно наличие «правильной» балансировки.
Для тестирования соберем простенький стенд из холдера/держателя на три аккумулятора, трех вольтметров и одного ампервольтметра:


Как видим, аккумуляторы практически полностью высажены, кроме среднего (10-15% емкости у крайних, около 25% у среднего). На лицо достаточно большая разбалансировка. При подключении аккумуляторной сборки к зарядному устройству, после проверки начинается заряд. Как и в случае с ЗУ SkyRC e450, зарядное устройство EV-Peak E3 чуть занижает зарядный ток (около 2,75А), хотя все в пределах нормы (10%):


Ранее я уже сравнивал показания приборов и DIY вольтметров/амперметров. Как пример, фото замера проходящего тока токовыми клещами UNI-T UT204A из предыдущего обзора:


Показания аналогичны, что и при замерах с True RMS мультиметром UNI-T UT61E.
Через 30-40 минут, зарядный ток начинает плавно снижаться:


Я не думаю, что кому-то будет интересен весь процесс заряда поэтапно, поэтому приведу лишь некоторые выборки:


ЗУ EV-Peak E3 заряжает литиевые аккумуляторы по алгоритму CC/CV, метод балансировки - CV phase, т.е. балансир не активен до тех пор, пока какая-либо банка (ячейка) не перейдет в режим CV. При достижении на какой-либо банке напряжения 4,16-4,17V балансир активируется и грубо говоря, временно отключает данную банку, перенаправляя энергию заряда на оставшиеся банки. Поскольку балансировочный ток всего около 400ma, то процесс выравнивания напряжения при сильном дисбалансе не слишком быстрый. При небольшом разбросе напряжения на банках, балансировка занимает около 10минут, не более.
В итоге, за минуту до окончания заряда имеем следующие показатели:


После отключения имеем следующую картину:


В принципе, хорошо. Хотелось бы видеть точное побаночное напряжение 4,2V, но возможно все дело в плохособранном стенде, ибо все сделано на «соплях».
Небольшой видеоролик окончания заряда:


Ну и для примера, реальный пример заряда 2S аккумулятора, емкостью 1200mah:


Зарядный ток около 2,8А, течет от плюса к минусу последовательно через все банки:


На среднем балансировочном проводе тока нет, что еще раз подтверждает отличную от бюджетных зарядников схемотехнику (тех, которые на TP4056 и аналогах):


На минусовом проводе аналогичный ток:


Более подробно смотрите в небольшом видеоролике:


Особенности данной модели:

Несмотря на все плюсы, зарядное устройство имеет и некоторые особенности, отчего сфера применения зарядника несколько сужается:
- нельзя снизить зарядный ток. Для компактных РУ моделей с небольшими аккумуляторами (2S 500-750mah) ток заряда в 3А чрезмерно высок и может привести к возгоранию
- нельзя заряжать одиночные аккумуляторы (1S). С другой стороны, ток в 3А несколько великоват для большинства моделей аккумуляторов на 2600-3500mah, поэтому за минус можно не считать.
- зарядное устройство не имеет режима «разряда» или «хранения». Модельные «липольки» не рекомендуется хранить полностью заряженными, поэтому по окончании сезона их лучше разрядить до определенного значения
- зарядное устройство очень просто в использовании и отлично подойдет для зарядки емких батарей от РУ моделей или электроинструмента
- зарядное устройство не имеет дополнительного гнезда для питания от бортового аккумулятора автомобиля или автоприкуривателя, как более «продвинутые» собратья, поэтому о зарядке модельных аккумуляторов в полевых условиях можно забыть, либо приобретать отдельно автомобильный инвертор 12V -> 220V

Плюсы:
+ качество изготовления
+ высокий ток заряда (3А)
+ хорошая балансировка (400ma)
+ встроенный БП
+ простота управления и использования

Минусы:
- зарядный ток несколько занижен (максимум 2,8А)
- отсутствует возможность выбора зарядного тока (только 3А с постепенным снижением)

Вывод: данное зарядное устройство покупалось с конкретной целью – быстрая зарядка переделанной на литий батареи шуруповерта. Свои функции выполняет отлично, нареканий нет, поэтому могу смело рекомендовать, кого не смущают ее особенности…

Планирую купить +12 Добавить в избранное Обзор понравился +36 +51